On Generalizing the C-Bound to the Multiclass and Multi-label Settings
نویسندگان
چکیده
The C-bound, introduced in Lacasse et al. [1], gives a tight upper bound on the risk of a binary majority vote classifier. In this work, we present a first step towards extending this work to more complex outputs, by providing generalizations of the C-bound to the multiclass and multi-label settings.
منابع مشابه
MLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection
Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...
متن کاملExploiting Associations between Class Labels in Multi-label Classification
Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...
متن کاملApplication of pH Indicator Label Based on Beetroot Color for Determination of Milk Freshness
Introduction: Applying of a new indicator in food packaging can be effective to inform consumers about the freshness and quality of the products. Materials and Methods: In the current study, a new milk freshness label was investigated containing beetroot color and multi layers of polystyrene. The label characteristics were investigated by estimating color number, release test, and scanning ele...
متن کاملBoostexter: a System for Multiclass Multi-label Text Categorization
This work focuses on algorithms which learn from examples to perform multiclass text and speech categorization tasks. We rst show how to extend the standard notion of classiication by allowing each instance to be associated with multiple labels. We then discuss our approach for multiclass multi-label text categorization which is based on a new and improved family of boosting algorithms. We desc...
متن کاملImproved Boosting Algorithms Using Confidence - rated Predictions
We describe several improvements to Freund and Schapire's AdaBoost boosting algorithm, particularly in a setting in which hypotheses may assign confidences to each of their predictions. We give a simplified analysis of AdaBoost in this setting, and we show how this analysis can be used to find improved parameter settings as well as a refined criterion for training weak hypotheses. We give a spe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1501.03001 شماره
صفحات -
تاریخ انتشار 2015